这两个领域可以被认为是同一枚硬币的两面,他们的功能是高度相互关联的。数据科学奠定了重要的基础,并解析了大数据集,来创建可能非常重要的初始观察,未来趋势和潜在见解。这些信息本身对于一些领域是有用的,尤其是建模,提高机器学习以及增强AI算法,因为它可以改进信息的分类方式和理解方式。
然而,数据科学提出了一些我们以前不知道的重要问题,同时提供了很少的答案。通过将数据分析添加到组合中,我们可以将那些我们不知道的信息转化为实际应用中的可操作的见解。
在思考这两个学科时,很重要的一步是要忘记把它们分别视为“数据科学与数据分析”。相反,我们应该将它们视为整体的一部分,这对于理解我们拥有的信息,以及如何更好的分析和检查它们至关重要。